p0 A_{LL} results from pp Run3:

A.Bazilevsky
For PHENIX Collaboration
September 11, 2003

Nothing but Data

Data set

Data collected with high p_T photon trigger

Based on EMCal; Threshold ~1.4 GeV/c

Rejection factor ~110

Analyzed data sample: 42.7M events (~0.215 pb⁻¹)

 $sqrt(\langle P_bP_y\rangle)\sim 26\%$

Minimum Bias data

To obtain "unbiased" $\pi 0$ cross section at low p_T

For high p_T photon trigger efficiency study

S_{p0}: **Pi0** reconstruction

Photon trigger efficiency for p0

- ✓ Pi0 efficiency plateaus for p_T>4 GeV/c
- ✓ Limitted efficiency at p_T <4 GeV/c:

1-2 GeV/c: 6%

2-3 GeV/c: 60%

3-4 GeV/c: 90%

4-5 GeV/c: 95%

✓ Monte Carlo reproduces

Data well

Run-2 results

p0 Cross section

- Results consistent with pQCD calculation
- □ Favours a larger gluon-to-pion FF (KKP)
- □ Run3 results reproduces Run2 results
 - ✓ Confirms the Run-3 data reliability and consistency
 - ✓ Run3 data reaches even higher p_Ts; results will be finalized soon

A_{LL}

$$A_{LL} = \frac{\mathbf{S}_{++} - \mathbf{S}_{+-}}{\mathbf{S}_{++} + \mathbf{S}_{+-}} = \frac{1}{|P_B P_Y|} \frac{N_{++}/L_{++} - N_{+-}/L_{+-}}{N_{++}/L_{++} + N_{+-}/L_{+-}}$$

- ++ same helicity
- +- opposite helicity
- (L) Relative Luminosity
- (P) Polarization
- (N) Number of pi0s

Relative Luminosity

- Special GL1P scalers used
 - ✓ Counts live trigger in each bunch crossing
 - ✓ 4 inputs (detectors) for syst. error study
- Systematic error study through comparison of counts from different detectors
 - look at ratio of 2 detector scalers crossingby-crossing:
 - $a(i) = N_A(i)/N_B(i)$
 - Ratio should be the same for all crossings (constant) if:
 - $N_A(i) = L * e_A$ and $N_B(i) = L * e_B$
 - B is always the counts from the beambeam counter (BBCLL1), A is one of the other scalers.
 - Fit this by the expected pattern:
 - $a(i) = C[1+A_{LL}P_1(i)P_2(i)]$
 - C, A_{LL} are the fitting parameters.
 - χ^2 is a very important check of systematic errors

Not so good ... so far, but ...

Relative Luminosity

Vertex width affects Rel. Lum. measurements

ZDC/BBC vs z-vertex width

After vertex correction

Relative Luminosity: Results

Achieved relative luminosity precision $\delta R = 2.5 \cdot 10^{-4}$

Pessimistic estimation limited by ZDC statistics (30 times less than BBC statistics used in Rel. Lum. measurements)

Rel. Lum. contribution for pi0 A_{LL} less than 0.2% For average beam polarizations of 26%

A_{LL} of BBC relative to ZDC consistent with 0

Strong indication that both A_{LL}s are zero (very different kinematical regions)

Beam Polarization

Spin direction confirmation

- ✓ With Spin Rotators and PHENIX Local Polarimeter
- ✓ Confirmed

Long. component of the spin direction

✓ PHENIX Local Polarimeter

Absolute polarization scale

- ✓ With RHIC CNI polarimeter
- ✓ Estimated to be ~30%
- ✓ This error does not change the significance of non-zero A_{LL} , because it scales both value and error in the same way (but it does change the comparison to theory)

Spin Long. Component

$$S_L = \sqrt{1 - S_T^2}, \qquad S_T = \sqrt{S_{T-vertical}^2 + S_{T-radial}^2}$$

0.5502 0.01505 ± 0.00394

 S_T is measured with PHENIX Local Polarimeter

Left-Right asymmetry

AM YELLOW LR south vs. fill num

Up-Down asymmetry

$$p_L(blue) = 99.3^{+0.5}_{-1.4} \, {}^{+0.0}_{-0.9}$$

$$p_L(yellow) = 97.4^{+1.3}_{-3.2} {}^{+0.1}_{-0.9}$$

A_{LL}: Pi0 reconstruction

Results obtained for four pt bins from 1 to 5 GeV/c

Pi0 peak width varies from 12 to 9.5 MeV/c² from lowest to highest pt bins

Background contribution under pi0 peak for ±25 MeV/c² mass cut varies from 45% to 5% from lowest to highest pt bins

Pi0 counting for A_{LL}

N_{p0} :

 $\pm 25 \text{ MeV/c}^2$ around p0 peak (and also ± 15 and $\pm 35 \text{ MeV/c}^2$ for cross checks)

N_{bck1}:

Two 50 MeV/c² wide areas adjacent to **p**0 peak

N_{bck2}:

250 MeV/c² wide area between **p**0 and **h** peaks

$N_{\pi0}$ and N_{bck} accumulated statistics

pt GeV/c	$N_{\pi0}$ 15 MeV/c ²	$N_{\pi0}$ 25 MeV/c ²	$N_{\pi0}$ 35 MeV/c ²	N _{bck1}	N _{bck2}
1-2	1278k	1777k	2129k	1470k	3478k
2-3	874k	1059k	1146k	335k	989k
3-4	176k	201k	208k	27k	83k
4-5	34k	38k	39k	3.9k	12k

A_{LL} measurements

$$A_{LL} = \frac{\mathbf{S}_{++} - \mathbf{S}_{+-}}{\mathbf{S}_{++} + \mathbf{S}_{+-}} = \frac{1}{|P_B P_Y|} \frac{N_{++}/L_{++} - N_{+-}/L_{+-}}{N_{++}/L_{++} + N_{+-}/L_{+-}}, \quad \mathbf{d}_{A_{LL}} = \frac{1}{|P_B P_Y|} \frac{1}{\sqrt{N_{++} + N_{+-}}} + \text{same helicity} + \text{opposite helicity}$$

Luminosity approach

- 1. Collect N and L for ++ and +- configurations (sum over all crossings) and calculate A_{IL} for each fill
- 2. Average A_{LL} over fills; use χ^2/NDF to control fit quality; use "bunch shuffling" to check syst. errors

Bunch fitting approach (just for consistency check)

- 1. Collect N and L for each crossing i and fit A_{LL} from $N(i)/L(i)=C\{1+A_{LL}P_B(i)P_Y(i)\}$ for each fill; use χ^2/NDF to control fit quality
- 2. Average A_{LL} over fills; use χ^2/NDF to control fit quality; use "bunch shuffling" to use bunch shuffling to check syst. errors

Luminosity approach

A_{LL} averaged over fills

$$A_{LL} = -2.2\% \pm 1.3\%$$

 $\chi^2/\text{ndf} = 34/48$
 $3-4 \text{ GeV/c}$

$$A_{LL} = -0.2\% \pm 3.3\%$$

 $\chi^2/\text{ndf} = 49/48$

4-5 GeV/c
$$A_{LL}$$
= -2.3%±7.4% χ^2/ndf = 39/48

Bunch shuffling

to check for syst. errors

Bunch shuffling = Randomly assigns helicity for each crossing

hasym set0 pt0 hasym set0 pt Nent = 1000 Nent = 1000 Mean = 0.00022 Mean = 0.00091 RMS = 0.01168 RMS = 0.01407 -0.1 0.1 -0.1 0 O 0.1 hasym_set0_pt3 Mean = -0.00404 Mean = 0.00024 RMS = 0.06058 RMS = 0.03221 -0.2 -0.1 0

Widths are consistent with obtained errors $\delta(A_{IJ})$

Luminosity approach: background

A_{LL} averaged over fills

$$1-2 \ GeV/c \\ A_{LL} = 0.4\% \pm 1.0\% \\ \chi^2/ndf = 47/48 \\ <\chi^2/ndf> = 48/48 \\ 2-3 \ GeV/c \\ A_{LL} = -2.2\% \pm 1.7\% \\ \chi^2/ndf = 35/48 \\ <\chi^2/ndf> = 50/48 \\ 3-4 \ GeV/c \\ A_{LL} = 1.9\% \pm 5.5\% \\ \chi^2/ndf = 33/47 \\ <\chi^2/ndf> = 45/47 \\ 4-5 \ GeV/c \\ A_{LL} = 10\% \pm 14\% \\ \chi^2/ndf = 47/44 \\$$

 $<\chi^2/ndf> = 41/44$

A_{LL} results

 A_{LL} (%) and $<\chi^2/NDF>$

pt GeV/c	$N_{\pi0}$ 15 MeV/c ²	$N_{\pi0}$ 25 MeV/c ²	$N_{\pi0}$ 35 MeV/c ²	N_{bck1}	N _{bck2}
1-2	-2.3±1.4	-2.8±1.2	-2.4±1.1	-0.6±1.4	0.4±1.0
	1.02	1.04	1.03	0.99	0.99
2-3	-2.7±1.6	-2.2±1.5	-2.2±1.4	-3.5±2.7	-2.2±1.7
	0.99	1.01	1.03	1.01	1.05
3-4	-1.7±3.5	-0.2±3.3	-0.1±3.2	9.4±9.2	1.9±5.5
	1.08	1.07	1.06	0.96	0.95
4-5	-1.4±7.9	-2.3±7.4	-1.3±7.3	38±24	10±14
	0.99	0.90	0.93	0.94	0.94

A_{LL} results: plots

Bunch fitting approach

 χ^2/NDF from bunch fitting for each fill

All $\chi^2/NDF \sim 1 =>$ no problem seen within fills

A_{LL} from bunch fitting

A_{LL} averaged over fills

$$1-2 \ GeV/c \\ A_{LL} = -2.8\% \pm 1.2\% \\ \chi^2/ndf = 62/48 \\ <\chi^2/ndf> = 51/48 \\ 2-3 \ GeV/c \\ A_{LL} = -2.2\% \pm 1.5\% \\ \chi^2/ndf = 35/48 \\ <\chi^2/ndf> = 48/48 \\ 3-4 \ GeV/c \\ A_{LL} = -0.7\% \pm 3.3\% \\ \chi^2/ndf = 56/48 \\ <\chi^2/ndf> = 56/48 \\ 4-5 \ GeV/c \\ A_{LL} = -7.2\% \pm 7.6\% \\ \chi^2/ndf = 46/48$$

 $<\chi^2/ndf> = 56/48$

Luminosity vs bunch fitting

pt GeV/c	$N_{\pi 0}$ Bunch fit	$N_{\pi 0}$ Luminosity
1-2	-2.8±1.2 1.06	-2.8±1.2 1.04
2-3	-2.2±1.5 0.99	-2.2±1.5 1.01
3-4	-0.7±3.3 1.17	-0.2±3.3 1.07
4-5	-7.2±7.6 1.17	-2.3±7.4 0.90

- ✓ Results are identical at lower pt bins
- ✓ Results start deviate at higher pt bins
- ✓ Pure statistical effect: too low statistics in each crossings to be used in bunch fitting
- ✓ Confirmed from simple MC: deviations may be comparable to stat. error

We use luminosity approach for final A_{LL} for all pt bins

Checks

PID check

pt GeV/c	$N_{\pi 0}$ noPID	$N_{\pi 0}$ PID
1-2	-3.1±1.0	-2.8±1.2
2-3	-1.9±1.4	-2.2±1.5
3-4	-0.4±3.2	-0.2±3.3
4-5	-3.9±7.3	-2.3±7.4

pt GeV/c	++ vs	+ - vs -+
1-2	0.7±1.7	-1.3±1.7
2-3	0.2±2.1	0.5±2.1
3-4	6.1±4.6	-2.7±4.6
4-5	-8.6±10.5	-6.7±10.4

PID = Shower profile cut

The same results

Consistent with 0 within 1.5 σ

A_L check for yellow beam

$$A_{LL} = \frac{\mathbf{S}_{+} - \mathbf{S}_{-}}{\mathbf{S}_{+} + \mathbf{S}_{-}} = -\frac{1}{|P|} \frac{N_{+}/L_{+} - N_{-}/L_{-}}{N_{+}/L_{+} + N_{-}/L_{-}}$$

$$A_L(\%)$$

pt GeV/c	$N_{\pi0}$ 15 MeV/c ²	$N_{\pi0}$ 25 MeV/c ²	$N_{\pi0}$ 35 MeV/c ²	N _{bck1}	N _{bck2}
1-2	0.1±0.4	-0.02±0.3	-0.04±0.3	0.2±0.4	0.00±0.3
2-3	0.1±0.4	-0.03±0.4	-0.01±0.4	0.2±0.7	0.2±0.5
3-4	0.7±0.9	1.1±0.9	0.8±0.9	-3.3±2.5	-1.0±1.5
4-5	-0.1±2.1	0.4±2.0	0.8±2.0	2.0±6.4	5.0±3.9

All are zeros within 1.5σ except

A_L check for blue beam

$$A_{LL} = \frac{\mathbf{S}_{+} - \mathbf{S}_{-}}{\mathbf{S}_{+} + \mathbf{S}_{-}} = -\frac{1}{|P|} \frac{N_{+}/L_{+} - N_{-}/L_{-}}{N_{+}/L_{+} + N_{-}/L_{-}}$$
$$\mathbf{A}_{L} (\%)$$

pt GeV/c	$N_{\pi0}$ 15 MeV/c ²	$N_{\pi0}$ 25 MeV/c ²	$N_{\pi0}$ 35 MeV/c ²	N _{bck1}	N _{bck2}
1-2	-0.06±0.4	0.06±0.3	0.00±0.3	-0.2±0.4	-0.02±0.3
2-3	0.1±0.4	0.00±0.4	0.2±0.4	0.9±0.7	0.01±0.5
3-4	0.4±0.9	0.6±0.9	0.6±0.8	-0.4±2.4	-3.6±1.5
4-5	-2.4±2.1	-1.6±2.0	-1.6±1.9	-1.1±6.2	1.3±3.8

All are zeros within 1.5σ , except

p⁰ A_{LL} from pp at 200 GeV

p _T GeV/c	$A_{LL}^{oldsymbol{p}0+bck} \ (r_{ m bck})$	A_{LL}^{bck}	A _{LL} ^{p 0} (Background subtracted)
1-2	-0.028±0.012 (45%)	-0.006±0.014	-0.046±0.025
2-3	-0.022±0.015 (17%)	-0.035±0.027	-0.019±0.019
3-4	-0.002±0.033 (7%)	0.094±0.092	-0.009±0.036
4-5	-0.023±0.074 (5%)	0.38±0.24	-0.045±0.079

Polarization scaling error $dP/P \sim 30\%$: is not included

- ✓ Analyzing power $A_N(100 \text{ GeV}) = A_N(22\text{GeV})$ is assumed
- ✓ dP/P~30%: combined stat. and syst. error for A_N(22GeV) (AGS E950)

Summary

First Pi0 A_{LL} results from long. polarized pp collisions with average beam polarizations of 26% presented

- ✓ Results presented in four p_T bins in the range 1-5 GeV/c
- ✓ A_{LL} sensitivity in the lowest p_T bin (1-2 GeV/c) is 1.2%
- ✓ 2.5σ (1.5 σ) effect seen at 1-2 GeV/c (2-3 GeV/c) bin